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Application of polynomial preconditioners to conservation laws
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Abstract. Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws
are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series
or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of preconditioner is optimal
in a space of polynomials of certain degree if the matrix has only real eigenvalues and a non-singular system of
eigenvectors. The preconditioning can be applied to any convergent splitting of the system matrix,i.e. to any clas-
sical implicit time-stepping method for conservation laws that is based on a quasi-Newton iteration. An efficient
implementation based on SSOR is presented and the approach is applied to simulations of the viscous unsteady
Burgers equation and to inviscid steady flow around an airfoil in two spatial dimensions to illustrate the method in
large-scale computations. For viscous flows the efficiency increase due to preconditioning is considerable.
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1. Introduction

Many problems of mathematical physics can be formulated in terms of conservation laws of
the general form

ut +∇ · (F (u,∇u)) = 0, (1)

whereu = (u1, . . . , us)
T and each componentuj is a function of timet and spatial coordi-

natesx1, x2, . . . , xN , andF is a (nonlinear) differential operator, which contains derivatives
with respect to the spatial coordinates. An important motivating example in this paper is
the system of Navier-Stokes equations for compressible flow which can be cast in this form.
The efficient time-integration of unsteady solutions to (1) is of central importance in many
applications, such as direct and large-eddy simulation of transitional and turbulent flow [1].
Moreover, within pseudo-time relaxation methods [2] to obtain steady solutions to (1) this
aspect is equally relevant. We will focus on possible efficiency enhancement arising from the
application of polynomial preconditioners, both in steady and unsteady problems.

In a great number of technological and natural systems the flow of fluids plays an important
role. A detailed knowledge of the dominant mechanisms which determine the main features of
the flow is often essential in order to understand the functioning of such systems and to be able
to optimize specific aspects. The physical basis of the governing ‘Navier–Stokes’ equations is
quite simple and represents the conservation of mass, momentum and energy. The nonlinear
nature of these equations, however, seriously complicates a quantitative mathematical analysis
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and an important alternative for investigating this system of equations is formed by numeri-
cal simulation. In this context either the Navier-Stokes equations or a filtered and modelled
‘physical equivalent’ such as the Reynolds averaged Navier-Stokes or Large-Eddy equations
serve as point of departure for the numerical treatment. Presently, steady calculations can be
performed within an acceptable computational effort, for complex situations involving flows
of direct practical interest. Complex, unsteady phenomena such as associated with turbulent
flow, however, can not be treated in such generality with sufficient accuracy using present-
day computing facilities and numerical methods. Of prime concern in relation to (1) is the
development of efficient time-integration schemes which allow to simulate the evolution of the
solutionu with time. There are many explicit time-integration schemes for conservation laws
(see LeVeque [3, 4] for a survey). All explicit methods encounter a time-step constraint due to
stability requirements. This constraint can become much too severe compared to restrictions
on the time-step arising from temporal accuracy considerations. This is observed in many
practically relevant cases of time-dependent fluid flow,e.g.transitional and turbulent flow in
shear layers [5–7]. Moreover, if only a steady-state solution is desired, this stability constraint
limits the time step to unnecessarily small values, in particular if the computation is near
convergence.

To relax the numerical constraint on the size of the time-step we consider A-stable implicit
time-stepping methods. Within this class of methods, advancing the solution one time-step
requires to solve a very large system of coupled algebraic equations. In order to realize this
solution many possible methods have been proposed which are all ‘inspired’ to some degree
by the classical Newton method. In view of computational efficiency it is often expedient to
use a method that requires only approximate knowledge of the Jacobi matrix of the system
of equations. These ‘quasi-Newton’ methods are aimed at providing a good balance between
convergence-rate and computational effort. The problem of solving a linear system of equa-
tions is at the heart of all these approaches. In this context preconditioning methods can greatly
enhance the efficiency of the overall method [8] and in this paper we turn to a specific class of
preconditioners which are suited for conservation laws.

The polynomial preconditioning considered in this paper has the benefit that it can be
applied to both viscous and inviscid unsteady flows which are treated with an implicit time-
integration method. Moreover, the preconditioning can be beneficial for steady flow cal-
culations as well if a pseudo-time-stepping method is used as relaxation method and the
pseudo-time evolution is treated with an implicit method. Here we illustrate the precondition-
ing for unsteady viscous flow in two dimensions and steady inviscid flow around an airfoil.
Extension to viscous unsteady flow governed by the full Navier-Stokes equations,e.g., when
simulating turbulent flow phenomena with direct or large-eddy simulation does not give rise to
any principal problems. At sufficient resolution,i.e., sufficiently low cell-Reynolds numbers,
the viscous contributions to the dynamics are beneficial for the preconditioning efficiency.
The computational overhead associated with the preconditioning is quite limited and in two
and three dimensions involves only a relatively small number of additional matrix-vector
multiplications which amounts to about 5–10% added operations in typical cases.

The actual convergence properties of the (quasi-) Newton iteration method are reflected
by spectral and eigenspace properties of the Jacobi matrix of the system of coupled algebraic
equations which we denote byA. For a real nonsingular matrixA a polynomial preconditioner
of A is a polynomial approximationp(A) of the inverseA−1. Polynomial preconditioning has
been used earlier for symmetric positive definite linear systems. In 1979 , Dubois, Greenbaum
and Rodrigue [11] proposed using a truncated Neumann series as an approximation ofA−1 for
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the purpose of preconditioning conjugate gradient methods to solve linear systemsAx = b
in combination with parallel computation. Four years later, Johnson, Micchelli and Paul [12]
proposed a polynomial preconditioner based on Chebyshev polynomials, which minimizes
an upper bound of the condition number of a preconditioned matrix for symmetric positive
definite matrices. As a basic preconditioning technique polynomial approximation is used
also in the construction of other preconditioners, for example, block incomplete factorization
[13], compensative block incomplete factorization [14] and multilevel methods [15]. Com-
pared with other preconditioning methods polynomial preconditioning has two prominent
advantages: (a) it needs very limited additional computation to construct a preconditioner
and (b) it is easily implemented for parallel computation. These two elements can lead to a
more efficient method for time-dependent flow simulation, in particular, compared to explicit
time-stepping methods. Some important work on polynomial preconditioning addressing also
several practical issues can also be found in [11, 16]. For the simulation of unsteady solutions
the fact that combinations of the solution at previous time-levels can be used in an extrapola-
tion to estimate the next solution with great accuracy is very helpful. In particular, this reduces
the number of iterations that is required to only a few per time-step and favors quasi-Newton
methods.

In this paper we consider polynomial preconditioners arising from the simple truncated
Neumann series or from Chebyshev polynomials. The latter can be shown to be ‘optimal’ in
the space of polynomials of specific degree provided the eigenvectors of the system-matrix are
not too close to linear dependence and only simple information of the eigenvalue spectrum is
incorporated. Alternative polynomials generated by GMRES or BiCGstab have been studied
as well and were found to perform slightly less well for the problems considered in this paper.
For unsteady flow in two dimensions governed by the viscous Burgers equation, both GMRES
and BiCGstab operate about 25% less efficiently compared to the Chebyshev preconditioning
but are more effective than the preconditioner arising from truncation of the Neumann series.
Actually, for linear systems it can be shown that the truncated Neumann series in combination
with a convergent splitting is equivalent to using the convergent splitting alone [9]. The benefit
of this ‘Neumann’ polynomial preconditioner for actual evolution problems based on basic
equations such as the viscous Burgers equation or the Navier–Stokes equations appears to
be associated with the convergence of the ‘outer’ iteration process,i.e., with the nonlinearity
of the problem. This is not true for the Chebyshev preconditioner or more traditional pre-
conditioners such as GMRES or BiCGstab. The latter preconditioners can show an enhanced
efficiency for linear as well as nonlinear problems and can enhance the overall efficiency of a
simulation without adding much computational overhead. The use of more advanced Krylov
methods [16] can lead to a strong increase of memory usage which for our main long-term
goals of direct and large-eddy simulation of turbulent flow, can be a major shortcoming of
these methods. Moreover, a stronger benefit for Krylov methods has been reported for steady
flow problems [38]; the requirements for unsteady flow simulations are quite different and
provide a valuable area of application of polynomial preconditioners. A good discussion of
advantages and disadvantages of polynomial preconditioning can be found in [10]. Among
the advantages are its relative simplicity in actual implementations which require only matrix-
vector products, its reduction of the number of operations,e.g., combined with conjugate
gradient methods and the fact that it can be added to enhance an already existing relaxation
method. Polynomial preconditioners can be very useful in combination with certain specific
complex linear problems. A main disadvantage of polynomial preconditioning is its relatively
poor performance on parallel computers with few processors and the fact that for certain
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classes of problems good alternatives exist that may perform better. Operating in the ‘middle-
ground’ between no preconditioning and advanced Krylov methods is the main motivation of
polynomial preconditioning since we try to find a proper balance between on the one hand the
computational overhead that arises from the application of a preconditioner and on the other
hand the gain in computational speed that results. In particular, we investigate preconditioners
which are suited for time-dependent problems; this does not necessarily imply to use the ‘best’
preconditioner in the sense of best approximation of the inverse of the system matrix but rather
to aim for an optimal computation-time.

Preconditioning methods to speed-up flow simulations have been considered from vari-
ous perspectives. As a general characteristic, preconditioning that reckons more with specific
problem-dependent information, is likely to perform better than methods that try to operate
without such input. Moreover, preconditioning itself represents some computational over-
head which should clearly be small compared to the associated gain in overall computational
efficiency of the simulation. In this paper we consider polynomial preconditioning which in-
corporates general information concerning the eigenvalue spectrum of the system matrix. This
is shown to be beneficial for the efficiency of the preconditioner,e.g., compared to methods
which do not involve such problem specific input. A further step in this context was pointed
out by Darmofal and Schmid [17]. The importance of eigenvectors in effective preconditioner
design was considered by these authors. A lack of eigenvector orthogonality was shown to lead
to a strong sensitivity of the simulation method and can even lead to an unrealistic short-time
growth of perturbations. In problems which involve system-matrices with ‘near-dependent’
eigenvectors, effective preconditioning design requires more problem-specific input than just
properties of the eigenvalue spectrum. In particular, severe robustness problems were reported
to arise around stagnation points and preconditioning would require further problem-specific
input. In this paper we do not incorporate eigenvector information and only consider efficiency
enhancement arising from incorporating eigenvalue spectrum information. This is shown to be
applicable to flows with stagnation points as well. Further improvements for such flows with
more involved preconditioners is likely as far as convergence rate is concerned. However, this
can also become problem-dependent since in general a better preconditioner will also repre-
sent a larger computational overhead. Thus a proper balance between enhancing efficiency and
computational overhead and general applicability of the approach must be maintained. Here,
for two applications we use only eigenvalue information and develop preconditioning for
time-dependent problems. Darmofal and Schmid focused mainly on steady flow at low Mach
numbers and modified a preconditioner of Van Leer and Turkel to improve the robustness,
as the Mach-number approaches 0, around stagnation points. This modification in particular
limits the departure from normality of the system-matrix eigenvector system.

The aim of the present paper is to review the construction of polynomial preconditioners
for conservation laws based on a convergent splitting of the Jacobi matrices. Both a simple
truncation of the Neumann series and a more involved preconditioner formulated in terms of
Chebyshev polynomials are considered. It is shown that the polynomial preconditioner based
on Chebyshev polynomials arrived at is optimal in a certain sense if the eigenvalues of the
Jacobi matrix are real. In addition, it remains effective if the eigenvalues are complex. This
optimality only holds for Jacobi matrices with a corresponding eigenvector system which does
not contain ‘near-dependence’ [17] to which we restrict ourselves here. Other approaches for
non-Hermitian matrices can be found in [18]. Furthermore, it is shown that the polynomial
preconditioning is applicable to any classical implicit method based on a convergent quasi-
Newton iteration and may lead to a considerable reduction in the computation time. Finally,
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the efficiency of the method is illustrated with simulation results for a viscous Burgers equa-
tion and inviscid flow around an airfoil, in two spatial dimensions. It is shown that sufficiently
viscous flow can benefit considerably from the preconditioning while the computation time
for inviscid flow calculations can be reduced by about 20%. The paper is organized as fol-
lows. In Section 2, a polynomial preconditioner in terms of Chebyshev polynomials is derived
and analyzed for unsymmetric matrices. In Section 3, applications of the preconditioners to
implicit methods based on a quasi-Newton iteration are discussed. Implementation-details
of the preconditioners for practical computation are also presented. In Section 4, we apply
polynomial preconditioning to the Burgers equation in two spatial dimensions. In Section 5,
application of the approach to inviscid flow around an airfoil is presented. Concluding remarks
are collected in Section 6.

2. Polynomial preconditioners

In this section we first provide a more precise definition of the basic system of equations
that needs to be solved and the role of preconditioning in this context in Subsection 2.1.
Subsequently, in Subsection 2.2 we describe in some detail the construction of polynomial
preconditioners and establish some of their basic analytical properties.

2.1. PRECONDITIONING QUASI-NEWTON METHODS

We consider the global setting of the implicit time-integration approach to (1) and in particular
identify quasi-Newton methods and the benefits of preconditioners. If we apply the method
of lines, in which only the spatial discretization is treated, the following system of ordinary
differential equations results:

dui
dt
+ fi (u) = 0, (2)

where a computational grid{xi} is introduced inRN , ui(t) = u(xi , t) and fi (u) denotes the
numerical flux. Except in one spatial dimension the indexi denotes a multi-index. In an
implicit method a proper backward difference method is selected subsequently for the time
discretization, which yields:

n+1∑
j=n−k

αju
j

i +1t fi (un+1) = 0, (3)

wherek is a nonnegative integer and only the numerical flux at the new time level (denoted
here by the superscript,i.e., un+1) is incorporated. For convenience in the presentation we
restrict to constant time-step1t in the implicit time-stepping methods. Two typical examples
are the Euler backward scheme wherek = 0, αn+1 = 1 andαn = −1, and the second order
backward difference method ‘BDF2’ wherek = 1, αn+1 = 3

2, αn = −2 andαn−1 = 1
2. The

time step1t is determined by temporal accuracy requirements and, in general, may depend
onn. In that case the coefficientsαj become dependent on the ratios of several previous time-
steps which, however, constitutes only a technical complication which we will not address
in this paper. In actual simulations the general case of nonuniform1t is used. In order to
determine the solution at the new time-level we introduce a vectorv with vi = un+1

i and
define functionsFi with Fi(v) = αn+1vi +1t fi (v). Equation (3) then reads
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Fi(v) = gi , (4)

where the right-hand side is given bygi = −∑n
j=n−k αju

j

i . The new stateun+1 hence follows
as a root of (4) for which Newton iteration could be used.

The classical Newton method for (4) leads to the following iteration

vk+1 = vk + A−1(g− F(vk)), (5)

whereA is the Jacobi matrix ofF given by

Aij =
(
∂Fi
∂vj

)
vk
. (6)

In general, the computation of the inverse ofA or solving the linear systemAx = b is very
time consuming in two or three spatial dimensions, in particular if one uses high order spatial
discretization. Moreover, the evaluation of (6) can be quite time-consuming and complex,
especially for nonlinear problems. To overcome these difficulties the classical approach is to
use an approximationB of A in (5) which yields a quasi-Newton iteration

vk+1 = vk + B−1(g− F(vk)). (7)

Clearly the more accurate the approximationB the faster the convergence of the iteration (7)
is expected to be. However, finding an accurate approximationB in an explicit form such that
the matrix-vector productB−1b is easily computed, is a difficult problem. To cope with this
obstacle in the present paper, we develop a preconditioning technique to find an approximation
of the inverseB−1 in an implicit form for the quasi-Newton iteration (7).

Since the conservation law (1) is often nonlinear the Jacobi matrices depend on the iter-
ation index in the Newton process and may need to be recalculated frequently in order to
retain a good convergence-rate. Hence, we must construct a preconditioner quite often and,
therefore, the total computation to solve (4) will be expensive, unless the construction of
the preconditioner is computationally very cheap. On the other hand, the Jacobi matrixA is
usually unsymmetric and we know little about the spectrum or even eigenspace structure of
the matrix. Thus, an efficient preconditioner ofA is required for a fast convergence, which
is usually complicated and computationally costly in its construction. These two conflicting
requirements seem to limit preconditioning methods. However, the discretization of time-
dependent problems by the method of lines compensates these restrictions in two ways. First,
backward time discretization always contributes positive components to the diagonal ofA.
This contribution is often reasonably large for conservation laws, in particular if a phenom-
enon is simulated time-accurately and the time-step is correspondingly small. Polynomial
preconditioning can benefit from this property. Second, the initial guess of the solution to (4)
is often quite accurate and can be found from an extrapolation ofu obtained at previous time
levels. Usually, only a few Newton iterations are needed to obtain the solution at the next time
level with sufficient accuracy. Moreover, for steady state calculations a successful approach
implies the addition of a pseudo-time derivative [37] and polynomial preconditioning can in a
similar way be efficient in pseudo-time as well.

Based on these observations it appears that a preconditioning which can balance between
the difficulties arising from the unsymmetry of the matrices and the nonlinearity on the one
hand and satisfy the requirement of a cheap construction on the other hand is desired for time-
accurate simulation of conservation laws. A suitable polynomial preconditioner is one of the
competitive candidates in this respect.
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2.2. EXPLICIT CONSTRUCTION OF OPTIMAL POLYNOMIAL PRECONDITIONING

A way to make the quasi-Newton iteration (7) more efficient is to apply good preconditioners
for the Jacobi matrices. One iteration in the quasi-Newton method implies the solution of
a linear systemAx = b to which we focus attention here. In this section we start from a
convergent splitting of the matrixA and construct and analyze polynomial preconditioners
based either on a truncation of the Neumann series for the inverse ofA or on Chebyshev
polynomials.

Assume thatA = M − N is a convergent splitting,i.e.,M is nonsingular and the spectral
radiusρ(M−1N) < 1 (see [19] and [20]). The inverse ofA is represented byA−1 = (I −
M−1N)−1M−1. Usually, the matrixM has a suitable structure such that the matrix-vector
productM−1b is easily computed. Our aim, therefore, is to approximate(I − M−1N)−1 in
terms of a polynomial inM−1N . Sinceρ(M−1N) < 1 we formally have

(I −M−1N)−1 =
∞∑
i=0

(M−1N)i.

A simple polynomial approximation of(I −M−1N)−1 is a truncated form of this Neumann
series. Therefore, an approximation ofA−1 as proposed in [11] is given by

Gk =
(

k∑
i=0

(M−1N)i

)
M−1. (8)

A measure for the quality ofGk as an approximation ofA−1 is related to the eigenvalues of
GkA, which all should be close to 1. We implicitly assume that the system of eigenvectors
is ‘sufficiently’ orthogonal to ignore sensitivity of the preconditioners due to matrix non-
normality (see also [17]). For a square matrixC throughout the paper the notationλ(C)
denotes an arbitrary eigenvalue ofC. A straightforward computation shows thatGkA =
I − (M−1N)k+1, which implies that

|λ(GkA)− 1| ≤ ρ̃k+1, (9)

where 1> ρ̃ ≥ ρ(M−1N). If Gk is used in (7) fulfilling the role ofB−1 the basic remaining
computation is the multiplication of the matrixGk with a vectorb. This is simply done by
using Horner’s rule

Gkb = (I +M−1N(I +M−1N(. . .M−1N(I +M−1N) . . . )M−1b.

If ρ(M−1N) is sufficiently smaller than 1 expression (8) gives a fair approximation forA−1

already at small values of the truncation orderk. However, ifρ(M−1N) is quite close to 1 the
approximation (8) requires many terms in order to be accurate and it becomes beneficial to
consider alternative preconditioners.

To find a more efficient polynomial preconditioner, information about the eigenvalues of
A is helpful. To establish this, letQ(λ) = ∑m

i=0 aiλ
i be the characteristic polynomial ofA.

It is well known thatQ(A) = 0. If A is nonsingular thena0 6= 0 and the equalityQ(A) = 0
implies that

A−1 = −a−1
0

m−1∑
i=0

ai+1A
i, (10)
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i.e., the inverse ofA is expressed as a polynomial inA. Formula (10) cannot be used for
numerical computation because finding the characteristic polynomial of a matrix is more
difficult than the computation of the matrix inverse. However, motivated by the observation in
(10), and taking into account any additional information about the eigenvalues ofA one could
improve the approximation (8) considerably. Letqk(A) = ∑k

i=0 biA
i be a polynomial pre-

conditioner ofA, where the coefficients{bi} are real. For notational convenience we introduce
the spacePk as the set of polynomials denoted byqk of degree at mostk. It is straightforward
to show thatλ(A)qk(λ(A)) is an eigenvalue ofAqk(A). Our aim is to construct a polynomial
approximationqk(A) of A−1 such that the eigenvalues ofAqk(A) are all close to 1. We will
specify this construction for general unsymmetric matrices in a few steps.

First, assume for the moment that the eigenvalues ofA are real and bounded by 0< α ≤
λ(A) ≤ β. In the following we present a polynomialpk(λ) in the spacePk which is optimal in
the sense that the maximal distance of an arbitrary eigenvalue of the matrixApk(A) from unity
is minimal. A similar result can be traced back to [34]. Definex(λ) = −1+2(λ−α)/(β−α)

and the polynomial

pk(λ) =
(

1− Tk+1(x(λ))

Tk+1(x(0))

)/
λ, (11)

where 0< α < β andTk+1(λ) is the Chebyshev polynomial of degreek + 1. Then

max
α≤λ≤β

|λpk(λ)− 1| = min
qk∈Pk

max
α≤λ≤β

|λqk(λ)− 1|. (12)

This optimality ofpk can be established in the following way. It follows from (11) since
|x(λ)| ≤ 1 for all λ ∈ (α, β) that

max
α≤λ≤β

|λpk(λ)− 1| = 1

|Tk+1(x(0))| . (13)

It is well-known that for any polynomialR of degreek + 1 or less and for|x| ≥ 1 that

|R(x)| ≤ |Tk+1(x)|max
|t |≤1
|R(t)|. (14)

Clearly,|x(0)| = (α+β)/(β−α) ≥ 1 and so applying inequality (14) toR(x(λ)) = λq(λ)−1
atx(0) gives the stated result since|R(x(0))| = 1 and max|t |≤1 |R(t)| = maxα≤λ≤β |λqk(λ)−
1|.

If A is a symmetric positive definite matrix it is shown in [12] thatApk(A) is the solution
which minimizes a bound on the spectral condition number of the preconditioned matrix.
However, matrices arising from discretization of conservation laws are usually unsymmetric
and the eigenvalues of the matrices are not always real. To apply the polynomial precondition-
ing to conservation laws, first we extend the approach to matrices with complex eigenvalues.
Since we are interested in the matrix of the formI −M−1N with ρ(M−1N) < 1, the main
result is stated in the following way.

Let A = I − T̃ with ρ(T̃ ) ≤ ρ̃ < 1, whereρ̃ is a positive constant, and

rk(λ) =
(

1− Tk+1((λ− 1)/ρ̃)

Tk+1(−1/ρ̃)

)/
λ, (15)

whereTk+1(λ) is the Chebyshev polynomial of degreek + 1. Then

|λ(Ark(A))− 1| ≤ ρ̃k+1. (16)
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The proof of this result is somewhat lengthy and technical and is collected in the appendix.
Guided by this result we can now turn to our basic problem and formulate the preconditioner
for general Jacobi matricesA. Splitting the Jacobi matrixA = M−N with ρ(M−1N) ≤ ρ̃ < 1
we apply the polynomial (15) to approximate(I −M−1N)−1. Then an approximation ofA−1

is given by

Hk = rk(I −M−1N)M−1 (17)

An elementary computation shows thatHkA = rk(I − M−1N)(I − M−1N). Therefore, it
follows from (16) that

|λ(HkA)− 1| = |λ(rk(I −M−1N)(I −M−1N))− 1| ≤ ρ̃k+1. (18)

It follows from the above arguments that the inequality (18) is strict if the absolute values of
the imaginary parts of the eigenvalues ofM−1N are smaller thañρ. In particular,|λ(HkA)−1|
can be much smaller thañρk+1 if the imaginary parts ofλ(M−1N) are small. For example, if
the eigenvalues ofM−1N are real one can show that

|λ(HkA)− 1| ≤ 1

Tk+1(1/ρ̃)
= 2ρ̃k+1

(1+
√

1− ρ̃2)k+1+ (1−
√

1− ρ̃2)k+1
, (19)

which is indeed much smaller thanρ̃k+1.
For practical computation we next consider how to compute the matrix-vector productHkb

for a given vectorb. It is well-known that Chebyshev polynomials satisfy the following 3-term
recurrence relation.

T0(λ) = 1, T1(λ) = λ, Ti(λ) = 2λTi−1(λ)− Ti−1(λ), i ≥ 2. (20)

Therefore, it follows from (15) thatr0(λ) = 1. Denoteσ = 1/ρ̃ then we have fork ≥ 1

rk(λ) = 1

Tk+1(−σ)λ
(Tk+1(−σ)− Tk+1(σ(λ− 1)))

= 1

Tk+1(−σ)λ
(−2σTk(σ)− Tk−1(−σ)− 2σ(λ− 1)Tk(σ(λ− 1))+ Tk−1(σ(λ− 1)))

= 1

Tk+1(−σ)λ
(2σ(λ− 1)(Tk(−σ)− Tk(σ(λ− 1)))− (Tk−1(−σ)− Tk−1(σ(λ− 1)))

−2σλTk(−σ))

= 2σTk(−σ)

Tk+1(−σ)
((λ− 1)rk−1(λ)− 1)− Tk−1(−σ)

Tk+1(−σ)
rk−2(λ),

which yields the following recurrence relation forrk(λ)

rk(λ) = αk((λ− 1)rk−1(λ)− 1)− βkrk−2(λ), r0(λ) = 1, r−1(λ) = 0. (21)

whereαk = Tk(−1/ρ̃)/Tk+1(−1/ρ̃) andβk = Tk−1(−1/ρ̃)/Tk+1(−1/ρ̃). A similar relation
was found earlier in [32] and used for practical computation in [16]. Based on the recurrence
relation (21) an efficient algorithm to computeHkb can be formulated.

In the numerical realization of the polynomial preconditioner based on Chebyshev polyno-
mials the estimate of the upper-bound for the spectral radiusρ̃ plays an important role. As is
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well known a computationally affordable (rough) estimate of an upper-bound of the spectral
radius can be obtained by calculation of the 1-norm of the system matrix. In general it is
a rather subtle matter to find more accurate estimates of the spectral radius which are also
computationally efficient. For specific conservation laws some knowledge of properties of the
solution can be used to improve the estimates and hence arrive at a further improvement of
the efficiency of the method. For certain applications a specific strategy for estimating the
spectral radius accurately could be adopted which renders the full method more efficient. As
an example, for steady state calculations it may not be required to update the estimate forρ

every iteration. Instead, an efficient method can be arrived at by providing an accurate estimate
and retain this value for many subsequent iterations. These issues of problem dependent fine-
tuning will not be considered in the present paper but rather we will focus on comparing
the Neumann with the (rough) Chebyshev preconditioning and identify global features of the
conservation law which contribute positively to the use of the preconditioning. In particular,
the dissipative character of the conservation law will be shown to be of importance.

The results formulated in this section and the conditions under which they can be derived
have a close relationship with the conditions for convergence of classical iterative methods for
implicit time-stepping schemes, to which we turn in the next section.

3. Polynomial preconditioning and convergent splitting

In the previous section, we presented polynomial preconditioning based on convergent split-
tings of matrices and Chebyshev polynomials. In this section, we proceed to apply the pre-
conditioners in a general framework as arises in the field of Computational Fluid Dynamics
(CFD). It is shown that the convergence requirement of a basic iterative method implies the
conditionρ(M−1N) < 1 which is the same as is required in the application of the precon-
ditioners. Thus, polynomial preconditioning of an already convergent method enhances the
convergence rate. As an illustration, implementational aspects of polynomial preconditioners
in relation to the SSOR relaxation are presented. First, however, we illustrate the methods
developed in Section 2 for a specific example.

Consider the one dimensional diffusion problem ut = εuxx, x ∈ (0,1), 0< t <∞
u(x,0) = u0(x), u(0, t) = f (t), u(1, t) = g(t).

We use a central difference scheme with a uniform mesh size1x in space. If the Euler
backward scheme is applied for the time discretization, we have

uni − un−1 = ε1t

1x2
(uni−1 − 2uni + uni+1).

The Jacobi matrix of the Newton iteration is of the form

A = I + ε1t

1x2



2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2


= M − N,
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whereM = diag(A) in this example. It is straightforward to show that all eigenvalues of
M−1N are real andρ(M−1N) ≤ S/(S+1) < 1 whereS = 2ε1t/1x2. AssumeS ≤ c, where
c is a positive constant. Ifk = 1, then (9) gives an error|λ(GkA)−1| ≤ (c/(1+c))2, but (19)
yields a much smaller error|λ(HkA) − 1| ≤ c2/(2+ 4c + c2). This illustrates the possible
effectiveness of the preconditioning as in (17) compared to the Neumann-series as in (8).

A classical implicit time-stepping method in conservation laws based on a Newton iteration
can be generally formulated as a quasi-Newton iteration (7) withB = M. For example, for
two-dimensional problems the Jacobi matrixA is split into the form

A = D + L1+ L2+ U1+ U2, (22)

whereD is the (block) diagonal ofA, L1 andU1 are (block) lower and upper triangular ma-
trices respectively, corresponding to the spatial discretization of derivatives in thex direction,
andL2 andU2 are (block) lower and upper triangular matrices respectively corresponding to
the spatial discretization of derivatives in they direction. Typical approximating splittingsM
of A used in CFD problems are
• (block) Jacobi relaxation:M = D, orM = D + L1+ U1, orM = D + L2+ U2,
• Gauss–Seidel relaxation:M = D + L1+ L2, orM = D + U1+ U2,
• approximate factorization of the form

M = (G+ L1+ L2)G
−1(G+ U1+ U2). ()

This includes incomplete factorizations. In particular, ifG = D/ω is chosen with a
suitable real parameterω, we have the SSOR approximation ofA, which reduces to the
symmetric Gauss-Seidel relaxation ifω = 1.

For linear problems of the form (1) the quasi-Newton iteration (7) reduces to a basic iterative
method for the linear system with the splittingA = M − N . It is well known that the
method is convergent if and only ifρ(M−1N) < 1. For nonlinear problems following [35]
one can prove that the convergence requirement for the quasi-Newton method implies that
ρ(M−1N) < 1 for (7) withB = M. Therefore, the conditionρ(M−1N) ≤ ρ̃ < 1 is necessary
to ensure convergence of a classical implicit method based on a quasi-Newton iteration for
CFD problems. This condition coincides with the requirement on the spectral radius of the
splitting in the construction of the polynomial preconditioners in the previous section. Hence,
the polynomial preconditioning is applicable to any convergent implicit method and may give
rise to a considerable improvement of the convergence rate of the method.

To implement polynomial preconditioning to typical implicit methods in CFD the main
task is to compute the matrix-vector productM−1Nb. This is straightforward if Jacobi or
Gauss–Seidel relaxation is applied because the matrixN is explicitly given and the linear
systemMy = Nb is easily solved. For an incomplete factorization we haveN = M − A,
although the entries ofN are not explicitly given. Hence,M−1Nb = (I −M−1A)b, which
requires the calculation of the matrix-vector productAb and the solution ofMy = Ab. In case
M is the SSOR approximation ofA, we apply polynomial preconditioning in the following
way to reduce the number of arithmetic operations in simulations.

RepresentA = D + L + U , whereD is the (block) diagonal ofA, L = L1 + L2 and
U = U1+ U2. The SSOR relaxation implies a splitting of the form

M = (G+ L)G−1(G+ U), (23)

whereG = D/ω with a positive parameterω. Write

A = M +D −G− LG−1U = (G+ L)(I − P)(I +G−1U),
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where

P = (G+ L)−1(G−D + LG−1U)(G+ U)−1G. (24)

It is straightforward to show thatρ(P ) = ρ(M−1N), whereN = M − A. Therefore, we use
polynomial preconditioning to approximate(I − P)−1 and obtain an approximation ofA by

Ak = (I +G−1U)−1pk(I − P)(G+ L)−1, (25)

wherepk(I−P) is a preconditioner ofI−P . The first and the last terms on the right hand side
in (25) constitute no computational problem sinceU andL are triangular matrices and thus
the linear systems(G+L)−1b and(I +G−1U)c can readily be solved. In the preconditioner
pk(I − P) the matrix-vector productPb is the basic quantity which needs to be computed
efficiently. We turn to this next and with some straightforward calculations we find

P = (G+ L)−1(G−D + (G+ L−G)G−1(G+ U −G))(G+ U)−1G

= (G+ L)−1((2− ω)G+ (G+ L)G−1(G+ U)− (G+ L)− (G+ U))(G+ U)−1G

= I + (2− ω)(I +G−1L)−1(I +G−1U)−1− (I +G−1L)−1− (I +G−1U)−1

= 1− ω

2− ω
I + (2− ω)

(
I

2− ω
− (I +G−1L)−1

)(
I

2− ω
− (I +G−1U)−1

)
.

This suggests an efficient way to implementPb. The arithmetic operations are approximately
the same as those needed to solve the linear systemMy = c. Compared with the direct
computation viaM−1Nb = (I −M−1A)b, we save a matrix-vector product. Because matrix-
vector products likeM−1Nb need to be computed many times in numerical simulations of
flows the improvement using this implementation of polynomial preconditioning ofI −P can
be considerable.

4. Application to a viscous Burgers equation

To illustrate the efficiency of polynomial preconditioning for conservation laws, in this section
we apply our method to a simple model problem in CFD which originates from the Burgers
equation in two spatial dimensions. We compare the efficiency of the different approaches
developed in the previous sections by focusing on the calculation time.

The Burgers equation which we consider reads

ut +
(

1

2
u2

)
x

+ buy = ν1u, (x, y) ∈ (0,1)× (0,1), (26)


u(0, y, t) = 3

2, u(1, y, t) = −1
2

u(x,0, t) = 3
2 − 2x, ∂

∂y
u(x,1, t) = 0

u(x, y,0) = 3
2 − 2x,

whereν andb are positive constants. Whenν = 0 andb = 1 the steady-state solution to this
problem is (see Figure 1)
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Figure 1. Representation of the steady-state solution of the Burgers equation atν = 0.

u(x, y) =



3
2, if (x, y) in regionA,

−1
2, if (x, y) in regionB,

3
2 − 2x

1− 2y
, if (x, y) in regionC.

An oblique shock starting at the point(x, y) = (3
4, 1

2) separates regionsA andB (see [36] for
further details).

Using a uniform mesh-sizeh in both x and y directions, a uniform time step1t , and
denotingunij = u(ih, jh, n1t), we discretize the Burgers equation using the first order upwind
conservative scheme for the convection term, the central difference scheme for the diffusion
term, and the second order backward difference method BDF2 for the time discretization. This
yields the following implicit method

3
2u

n+1
ij − 2unij + 1

2u
n−1
ij +1tfij (un+1) = 0 1≤ i, j ≤ m,

3
4u

n+1
i,m+1 − uni,m+1 + 1

4u
n−1
i,m+1 +1tfi,m+1(un+1) = 0 1≤ i ≤ m,

(27)

whereun+1 = (un+1
11 , . . . , un+1

m1 , . . . , un+1
1,m+1, . . . , u

n+1
m,m+1)

T andm = h−1 − 1. The scheme is
a 3-level implicit method, which requires a separate startup procedure. For clarity we simply
choose the Euler backward scheme u1

ij − u0
ij +1tfij (u1) = 0 1≤ i, j ≤ m,

1
2u

1
i,m+1 − 1

2u
0
i,m+1 +1tfi,m+1(u1) = 0 1≤ i ≤ m,

(28)

where the unknownsu0
i are obtained from the initial data. Note that in (27) and (28) the set

of equations valid asj = m + 1 are slight modifications of the standard BDF2 representing
the Neumann condition on the boundaryy = 1. This problem changes from a parabolic to
a hyperbolic one in caseν approaches 0. In view of the use of upwind discretization and a
suitable, robust treatment of the boundary condition which applies aty = 1, no additional
special precautions are needed in the present numerical treatment. The Equations (27) and
(28) are easily put in the form (4). LetA be the Jacobi matrix defined by (6). Our polynomial
preconditioners are based on the Jacobi splittingA = M −N , whereM is the diagonal ofA.
For this splitting it is straightforward to show that
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ρ(M−1N) ≤ ‖NM−1‖1 <
4ν1t/h2+ (b + 2|unij |)1t/h

σn + 4ν1t/h2+ (b + |unij |)1t/h
, (29)

whereσ0 = 1 andσn = 3/2 if n ≥ 1. Note that this bound is only a very rough estimate.
In practiceρ(M−1N) is often much smaller than the right hand side of (29). Therefore, the
condition

1t ≤ σnh

|unij |
(30)

suffices to ensureρ(M−1N) < 1. In view of the required time-accuracy we use a uniform
time-step1t = h. If n ≥ 1 the propertyρ(M−1N) < 1 follows from (30) because we know
−1

2 ≤ unij ≤ 3
2 from the initial and the boundary conditions of the Burgers equation and the

maximum principle. Forn = 0 it is straightforward to checkρ(M−1N) ≤ ‖NM−1‖1 < 1.
The stopping criterion for the quasi-Newton iteration at stepn+ 1 is determined by

‖F(v)− g‖1 < ε(n),

whereε(n) is conveniently chosen asε(n) = min(10−4,1t‖unt ‖1/20).Since the equation has
a steady-state solution, our numerical experiments correspond to time-accurate simulations
starting from an initial solution to a steady-state solution. The stopping criterion for a steady-
state solution used here is‖ut‖1 < 10−6.

As a point of reference we also run this flow problem using the well-known compact-
storage explicit Runge-Kutta method

u(0)i = uni

u(k)i = u(0)i −1tnβkfi (u(k−1)) for k = 1,2,3,4

un+1
i = u(4)i

(31)

with β1 = 1/4, β2 = 1/3, β3 = 1/2 and β4 = 1. For the Runge-Kutta method the time-step is
determined by a stability analysis withCFL-number equal to

√
2. Moreover, we incorporate

the standard Jacobi method in the comparison in which we solve the linear system involved
in an update in the quasi-Newton process with the Jacobi scheme. Thus, we compare our
preconditioning approach for an implicit method with an explicit time-stepping scheme as
well as with a standard implicit scheme without preconditioning. For all implicit methods
including the Jacobi method and all preconditioned methods the initial guess of the quasi-
Newton process at stepn+ 1 is determined by

v0 =
 u0, if n = 0

2un − un−1, if n ≥ 1.

This extrapolation speeds up the simulation in view of the reduction in the number of quasi-
Newton iteration steps.

We run all methods on a grid withh = 1/100 and useb = 1. In the simulation we vary
the viscosityν in order to assess the efficiency of the various methods and its dependence
on viscosity. Because|unij | ≤ 3

2 the time step1t = h in all implicit methods is about√
2 max(5/2, 4 ν/h) times the time-step in the Runge-Kutta method. Table 1 shows the
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Table 1. CPU-time: Runge–Kutta and Jacobi method.

ν 10−1 10−2 10−3 10−4 10−5 0

RK 21m26·93s 1m13·20s 0m37·36s 0m22·52s 0m22·10s 0m19·23s

J 5m46·11s 1m01·81s 0m33·90s 0m19·94s 0m18·90s 0m17·55s

Table 2. CPU-time: truncated Neumann series preconditioners.

k�ν 10−1 10−2 10−3 10−4 10−5 0

1 5m11·55s 0m57·74s 0m30·95s 0m18·00s 0m18·00s 0m17·34s

2 4m26·18s 0m54·22s 0m31·33s 0m17·70s 0m17·67s 0m16·81s

3 4m02·92s 0m50·10s 0m33·58s 0m17·90s 0m17·31s 0m17·00s

4 3m47·20s 0m56·93s 0m39·13s 0m16·57s 0m15·48s 0m15·92s

5 3m45·75s 0m51·21s 0m33·86s 0m15·34s 0m15·11s 0m15·10s

6 3m42·64s 0m53·73s 0m38·57s 0m17·37s 0m16·80s 0m16·87s

7 3m43·60s 0m55·88s 0m42·19s 0m18·85s 0m18·45s 0m18·28s

8 3m38·29s 0m55·31s 0m46·74s 0m20·58s 0m19·73s 0m19·64s

9 3m52·35s 0m58·87s 0m50·56s 0m22·31s 0m21·46s 0m22·05s

10 3m57·49s 0m53·05s 0m54·17s 0m23·26s 0m23·01s 0m22·85s

CPU-time for the Runge-Kutta method (RK) and the Jacobi method (J) needed to obtain the
steady state. These calculations were performed on a standard HP 700-series workstation.
Compared with RK one clearly observes a strong decrease in the CPU-time when using the
Jacobi method in case the viscosityν is relatively large. For smallν a gain of only about 5%
is observed.

For the polynomial preconditioners the methods are compared with different degree of
polynomials from 1 to 10. One may anticipate that an increase in the degree of the polynomial
will, in general, improve the quality of the preconditioner, however, at the expense of addi-
tional calculation. By varying the degree, an idea of the optimal value may be obtained. For
the preconditioned methods based on Chebyshev polynomials the boundρ̃ (which is required
in (15)) of the spectral radiusρ(M−1N) is estimated by the 1-norm of the matrixNM−1 at
each iteration. Tables 2 and 3 show the CPU-time of the simulations using the polynomial
preconditioners. It was verified separately that the computations indeed follow the solution
of the Burgers equation to the steady-state accurately in time and hence these numerical
experiments model actual unsteady flow simulations rather well. The relative improvement
due to preconditioning is quite large in this application as can be inferred from comparing
entries from Table 1 with Table 2 and Table 3. We also studied the benefit of polynomial
preconditioning as a function of problem-size for this problem and observed a comparable
speed-up ratio due to polynomial preconditioning for problems which are orders of magnitude
larger. This suggests that application to large-scale computations,e.g., involving direct and
large-eddy simulation of turbulent unsteady flow in three dimensions will benefit equally from
this type of preconditioning.
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Table 3. CPU-time: Chebyshev polynomial preconditioners.

k�ν 10−1 10−2 10−3 10−4 10−5 0

1 3m51·08s 0m53·17s 0m39·60s 0m17·74s 0m18·27s 0m17·83s

2 2m20·97s 0m42·88s 0m37·71s 0m15·08s 0m14·99s 0m14·63 s

3 1m47·87s 0m41·15s 0m34·15s 0m16·81s 0m17·11s 0m16·07s

4 1m46·72s 0m38·98s 0m39·25s 0m17·25s 0m18·45s 0m17·39s

5 1m26·31s 0m42·30s 0m42·75s 0m20·00s 0m19·13s 0m18·71s

6 1m 21·57s 0m46·48s 0m45·51s 0m20·53s 0m20·47s 0m20·72s

7 1m35·27s 0m50·34s 0m49·47s 0m24·14s 0m22·92s 0m22·83s

8 1m39·79s 0m54·52s 0m53·34s 0m25·41s 0m25·19s 0m25·54s

9 1m42·03s 1m00·44s 0m57·03s 0m27·98s 0m27·59s 0m26·03s

10 1m47·47s 1m04·91s 1m02·35s 0m29·14s 0m29·65s 0m29·05s

As shown by the numerical results collected in Tables 1–3 polynomial preconditioners
indeed can provide considerable reduction of the simulation time, in particular, if the vis-
cosity ν is large. It appears that the preconditioners based on the Chebyshev polynomials
yield better results in case the viscosity is sufficiently high. The larger the viscosityν the
bigger the improvement due to the preconditioners. Ifν ≤ 10−3 the difference in efficiency
between the two polynomial preconditioners is not apparent. The reason is that in this case the
spectral radiusρ(M−1N) is well separated from 1. Numerical experiments show that typically
ρ(M−1N) < 0·75 if n = 1 and ρ(M−1N) < 0·66 if n > 1. Both (8) and (17) give fair
approximations ofA−1 already with low degree polynomials. Equation (17) usually gives a
better approximation, but requires an estimate of the spectral radius ofM−1N at each iteration
and thus needs extra computation. This renders the ‘Chebyshev’-method about equally effi-
cient as the method based on the ‘Neumann-series’ preconditioner in case the viscosity tends
to 0 . Problem dependent fine-tuning in this respect may improve the results obtained with
the Chebyshev preconditioners, but this will not be considered here in order not to obscure
the comparison. In some cases the extra work involved in estimatingρ̃ may even lead to a
situation in which the Chebyshev-preconditioners yield a somewhat worse result compared
to (8) as far as computation time is concerned. This is the case whenν = 10−3 in our
numerical example. The optimal degree of the polynomials is not theoretically determined
in the present paper. However, the numerical results indicate that it depends on the viscosityν

to some extent. In Tables 2 and 3 we underlined the optimal CPU-time for different viscosity
ν. For the preconditioners based on Chebyshev polynomials it shows a regular pattern. The
largerν the higher the optimal degree of the polynomials. For the preconditioners based on
a truncated Neumann series the situation differs considerably. The optimal degree is not very
sensitive to the viscosityν. For example, the degreek = 3 for the preconditioner based on
Chebyshev polynomials is quite a good choice and the degreek = 5 for the preconditioner
based on the truncated Neumann series is quite useful for 0≤ ν ≤ 1/10. Another clear
phenomenon in Tables 2 and 3 is that the larger the viscosity the longer the CPU-time. This
is caused by two main contributing factors. First, the larger the viscosity the longer it takes,
measured in actual physical time measured in seconds to go from the initial solution to the
steady-state solution. For example, the dimensionless real-life time in caseν = 1/10 is 3·52
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times that in caseν = 0. Note that the real-life time is approximately the same forν ≤ 10−4.
Second, the larger the viscosity the larger the spectral radiusρ(M−1N). Therefore both (8)
and (17) need high degree polynomials for a fair approximation and at each time step more
iterations are needed in order to obtain a sufficiently far converged solution. In this regime
Chebyshev preconditioning is supposed to work better than the simple truncated Neumann
series approach as is clearly illustrated by the results.

5. Application to inviscid flow around an airfoil

In this section we consider the application of polynomial preconditioning in the context of
inviscid transonic flow around an airfoil. First we briefly describe the governing equations
and the spatial discretization. Subsequently, we proceed with the implicit Euler backward
scheme and present the basic solution method, using symmetric Gauss-Seidel relaxation. We
then establish the reduction in computational effort obtained when adopting in addition a
polynomial preconditioning.

The application that we study involves steady flow around an airfoil in the transonic regime.
Although we are interested in the steady flow we do not solve the stationary equations directly
but rather start from an initial condition and use a time stepping scheme to obtain the stationary
solution. Hence, we also start from the unsteady Euler equations for inviscid compressible
flow. In Cartesian coordinates in two dimensions these can be written as

∂q

∂t
+ ∂f
∂x
+ ∂g
∂y
= 0 (32)

with

q =


ρ

ρu

ρv

E

 , f =


ρu

ρu2+ p
ρuv

u(E + p)

 and g =


ρv

ρuv

ρv2+ p
v(E + p)

 , (33)

whereρ is the density,E is the total energy density andu andv are the velocity components
in x andy direction respectively. The constitutive equation for the pressure,p, is given by

p = (γ− 1)

(
E − 1

2
ρ(u2+ v2)

)
, (34)

whereγ is the adiabatic gas constant which we takeγ = 1·4.
The Euler equations in (32) are in conservation form and the state vectorq contains the

densities of the conserved quantities andf andg are the corresponding flux vectors. Integra-
tion of (32) over an arbitrary volume in space shows that the components ofq change only due
to a flux contribution through the boundaries of this volume. To solve (32) we adopt a finite
volume method on a structured grid which retains the conservation property. In this method
we compute the flux over the control volume edges as in Figure 2 (left).

�i,j
dqi,j
dt
+ h

i+1
2 ,j
− h

i−1
2 ,j
+ h

i,j+1
2
− h

i,j−1
2
= 0, (35)

where�i,j is the area of the control volume andh denotes the numerical flux vector on the
four boundaries segments(i + 1

2, j) etc.
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Figure 2. Left: Control volume for spatial discretization on a structured grid indicating also the outward normal
vectorn

i+1
2,j

. Right: Contourplot of the pressure-field around a NACA0012 airfoil at transonic flow conditions.

In transonic flow applications shocks may occur which impose specific restrictions on the
spatial discretization. Accurate solutions may be obtained if the shock can be properly located
and if the scheme can suppress undesired numerical oscillations near the shock. By construc-
tion, scheme (35) is in conservation form which is a necessary condition for a proper capturing
of the shock [3]. To suppress numerical oscillations near the shock, artificial dissipation can
be added explicitly or implicitly by the use of upwind schemes. First order upwind schemes
suppress these oscillations too strongly and hence smear the shock. This can be avoided if a
higher order TVD (Total Variation Diminishing) scheme ase.g., developed by Van Leer [31]
is used. This type of higher order schemes uses a nonlinear ‘limiter’ function which limits
differences in the gradient of the solution between adjacent grid cells. The well-known min-
mod limiter is adopted in this paper [3]. The numerical flux on the control volume edges is
approximated using the flux splitting method of Roe [28, 22]. The parameters in this scheme
were chosen such as to ensure monotonicity [26, 24, 23] and third order accuracy in regions
in which the solution is smooth.

For the flow around an airfoil there are two types of boundaries. The far field boundary
arises because of the finite extent of the computational domain and solid wall conditions
apply at the airfoil. In the far field subsonic inflow or outflow may occur and a method
is used which takes the incoming and outgoing characteristics into account. Depending on
whether the boundary is an inflow or outflow boundary we extrapolate one or three Riemann
invariants from the inner field respectively and set the remaining Riemann invariants to their
value at infinity [28]. The only physical condition for inviscid flow over a solid wall is the
impermeability of the solid wall which is equivalent to setting the normal velocity on the solid
wall equal to zero. As numerical boundary conditions we extrapolate in addition the density,
the tangential velocity and the pressure from the flow field to the wall. Due to the use of a
so called C-grid the trailing edge of the airfoil may become multi-valued. To prevent this we
average the values of the state vectors at the trailing edge after every update of the state vector.

To initialize the flow field, we set all dependent variables equal to their values at infinity
determined by the Mach number,M∞, and the angle of attack,α. As an illustration of the
method we calculated the well-known test case of inviscid flow around a NACA0012 airfoil at
M∞ = 0·8 andα = 1·25o [27]. With this combination of free-stream Mach number and angle
of attack the flow is transonic. The solution displays a strong shock on the upper surface of the
airfoil, a weak shock on the lower surface and a weak contact discontinuity in the wake. The
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Figure 3. Left: Pressure-coefficient along a NACA0012 airfoil at transonic flow conditions. Right: Discrete
L2-norm of the residual RES of the continuity equation versus cpu-time in seconds for the implicit factorization
method with (solid curve) and without (dashed curve) polynomial preconditioning.

grid we use is a C-grid with 289× 65 grid points where 160 points are located on the airfoil
and 65 points in the wake. In Figure 2 (right) a contour-plot of the pressure is given which is
in agreement with the results in [29, 30]. The strong shock on the upper side can be captured
with only one grid point in the shock. This is illustrated in Figure 3 (left) which shows the
pressure-coefficient along the airfoil.

As was shown in ref [22] the computational effort needed to obtain the steady state is
significantly smaller with an implicit method compared to an explicit Runge-Kutta method.
With a proper preconditioning the computational method may be further accelerated. First we
sketch the implicit base method and show improvements arising from simple preconditioning
afterwards. The implicit base method considered here is an implicit factorization method
based on an Euler backward time-discretization. The discrete version of (32) for the Euler
backward scheme can be written as

qn+1
i,j = qni,j − t.Fi,j (q

n+1), (36)

where the superscriptn labels the time level andFi,j is the total numerical flux in the grid
point (i, j). The Euler backward scheme is first order accurate in time, but this is not a concern
here since we are only interested in the steady state solution and thus the overall accuracy is
determined by the spatial discretization. First order Taylor expansion ofF aroundqn yields(

I

1t
+ ∂F
∂q
(qn)

)
1qi,j = −Fi,j (qn) (37)

where∂F/∂q is the symbolic representation of the Jacobi matrix ofF and1qi,j = qn+1
i,j −

qni,j . For infinite1t and exact Jacobi matrix this scheme is equal to Newton iteration for
the system of equationsF(q) = 0. However, it is not possible to obtain the exact Jacobi
matrix at a reasonable computational cost. Therefore, we approximate the Jacobi as in [25].
Corresponding to the five point stencil of Roe’s scheme in 2D we get a Jacobi matrix with five
bands of 4× 4-matrices. The five blocks for a grid point(i, j) are given by
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Di,j = A+
i−1

2 ,j
− A−

i+1
2 ,j
+ A+

i,j−1
2

− A−
i,j+1

2

Ni,j = A−
i,j+1

2

Si,j = −A+
i,j−1

2

Ei,j = A−
i+1

2 ,j

Wi,j = −A+
i−1

2 ,j
,

(38)

whereD, N , S, E andW stand for diagonal, north, south, east and west contribution. The
matricesA+ andA− are determined by the positive and negative eigenvalues of the flux Jacobi
matrix

A = R3L = R(3+ +3−)L = R3+L+ R3−L = A+ + A−. (39)

The ‘delta formulation’ in (37) allows the use of an approximation of the Jacobi matrix without
changing the steady state solution. If the iteration process converges it follows from (37) that
the flux equals zero in all grid points and hence the solution satisfies the stationary discrete
equations.The matrix on the left hand side in (37) can be rewritten in different ways in terms of
the matricesD,N , S,E andW which are the contributions to∂F/∂q from the corresponding
parts in (38). We will use the implicit factorization scheme as used in [22]:(

I

1ti,j
+D +N + E

)(
I

1ti,j
+D

)−1(
I

1ti,j
+D + S +W

)
1qi,j = −F(qni,j ) (40)

which corresponds to the symmetric Gauss-Seidel relaxation. The boundary condition at the
solid wall is treated explicitly in the same way as for the explicit scheme. The far field
boundary condition is treated implicitly. The time step in pseudo-time for the implicit scheme
is determined in the same way as the stability time step for the explicit scheme as used in
Section 4. Local time stepping is used to accelerate convergence.

We can now compare the computational efficiency of the implicit base method with and
without polynomial preconditioning. Since we consider inviscid flow we will only use the
simpler Neumann series for the preconditioning in view of the almost equal performance of
this and the Chebyshev preconditioning in case of low (or zero) viscosity as was observed in
the previous section. The implementation is as described in Section 3 withω = 1. A further
acceleration due to preconditioning of about 20% can be achieved for residue levels on the or-
der of 10−7 as is illustrated in Figure 3 (right). In this case we used two terms in the Neumann
series preconditioning (8). The increased convergence rate arising from the application of the
polynomial preconditioner is mainly due to the fact that applying the preconditioner is com-
putationally less demanding than recomputing the nonlinear right-hand side. The convergence
shown in Figure 3 (right) is roughly exponential and stalls at levels on the order of 10−8 which
is due to the finite accuracy with which real numbers are represented in the computations
and the sensitivity of the predictions with respect to small perturbations. Similar stall in the
convergence and even oscillations at a low level, as shown here, are typical for simulations
of inviscid flow around airfoils (see [22] and references therein). We also considered incorpo-
rating more terms in the series expansion which does reduce the number of iterations further
but does not lead to a significant additional reduction in the cpu-time compared to the results
shown in the figure. Hence, it appears in this case that a simple polynomial preconditioning
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can reduce the computational effort noticeably in large-scale inviscid flow applications which
directly illustrates the findings in Section 3. In particular, since the spectral radius of the
system matrix appears to be well separated from unity, already low order expansion is very
effective. For viscous flow it may be expected that the preconditioning is even more effective
by analogy with the findings in Section 4 and also that Chebyshev preconditioning outweighs
the Neumann series approach.

6. Concluding remarks

As we have shown polynomial preconditioning can lead to improvements to implicit meth-
ods for conservation laws based on a quasi-Newton method, in particular if the governing
equations have some viscous contribution to the flux. Of central importance is the fact that
this preconditioning can be applied to any convergent splitting of the system-matrixA and
hence preconditioning will contribute positively to any already convergent method. The spe-
cific splitting A = M − N can be further exploited to enhance the effectiveness of the
preconditioning. The smaller the spectral radiusρ(M−1N) the more efficient the polynomial
preconditioners. A way to make polynomial preconditioners more efficient for conservation
laws is to carefully choose some splitting approaches as describede.g., in [19] and [20]. For
example, the SOR splitting can be an interesting choice. Another, related option is to develop a
new discretization of the conservation laws so that one can more easily obtain a good splitting
for the corresponding Jacobi matrices.

The ‘optimal’ preconditioning, incorporating eigenvalue aspects only, arrived at in Sec-
tion 2 requires an estimate of the spectral radius of the convergent splitting ofA. In this paper
a robust but only rough estimate was used in the simulations and it appeared that the overall
efficiency of the simulation method was improved considerably compared to the case without
preconditioning, even with only part of the potential of the preconditioning realized. Further
improvements could be expected for some, more specific applications and the additional costs
of arriving at an improved estimate of the spectral radius may well be compensated by an
increase in convergence-rate for the linear system solution. IfM is simple, for example when
using the Jacobi or the Gauss-Seidel relaxation, only little extra computation is needed. IfM

is complicated, however, an accurate estimate ofρ(M−1N) can be quite time consuming,
which may significantly influence the simulation time of the method. Some estimates on
the convergence rate of basic iterative methods in [20] and [19] can be applied to overcome
this difficulty. A more involved improvement would require knowledge regarding the entire
eigenvector system of the matrixA. In this setting the accuracy with which the inverse of
the matrixA is approximated would be known more precisely compared to the present case in
which only eigenvalue information is used. However, this increase in accuracy comes at a very
large price regarding computational effort and is not likely to result in a useful and efficient
preconditioning method for general applications.

Time-accurate simulation of turbulent flow requires suitably small time-steps to ensure
a proper capturing of the detailed elements arising in the evolution. This further enhances
the efficiency of low order polynomial preconditioning and hence applies well to 3D Navier-
Stokes simulations such as in direct and large-eddy simulations. The application of polynomial
preconditioning for time-accurate simulation in a spatially developing three dimensional tran-
sitional and turbulent mixing layer is a subject of current research and will be published
elsewhere.
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Since conservation laws are usually nonlinear and the Jacobi matrix at each Newton iter-
ation is not the same, the problem of finding an optimal degree for the polynomial precon-
ditioner is very difficult and is best approached for every application separately. Moreover, it
also depends on the splitting of the Jacobi matrix. Fortunately, the efficiency of polynomial
preconditioning is not very sensitive to the degree of the polynomials. For higher degree
the preconditioning is more accurate but also computationally more expensive. In total, the
benefits of a higher degree were found quickly to be canceled by the additional cost of the
required extra calculations. A polynomial preconditioning with lower degree, for example 1
or 2, often already provides a considerable improvement to a given implicit method. This is a
main benefit of polynomial preconditioning for conservation laws.
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Appendix

To prove the statements in (15) and (16) we proceed in two steps. The result of the first step
can also be shown by using some results from literature, for instance, see [33]. We prove step
one here as well for convenience to the readers. First we make the following assumption on
A: Assume that the real part of an arbitrary eigenvalue ofA is positive and all eigenvalues of
A are contained in an ellipsẽE in the right half complex plane

Ẽ = {y : y =
(

β+ α

2
− β− α

2
(cosθ+ i µ sin θ)/

√
1− µ2

)
,0≤ θ < 2π}. (A1)

The foci of the ellipse are(α, 0) and (β, 0), where 0< α < β and 0≤ µ < 1. With the
transformationz(y) = −1+ 2(y − α)/(β− α), we obtain a new ellipse

E = {z : z = −(cosθ+ i µ sin θ)/
√

1− µ2, 0≤ θ < 2π}.
Usingγ = √(1+ µ)/(1− µ) we find equivalently

E = {z : z = −1

2
(γeiθ + γ−1e−iθ), 0≤ θ < 2π}. (A2)

Consider the polynomial

pk(y) =
(

1− Tk+1(z(y))

Tk+1(z(0))

)/
y. (A3)

Since the Chebyshev polynomialTk+1(z) can be written as

Tk+1(z) = 1

2
((z+

√
z2− 1)k+1+ (z+

√
z2− 1)−(k+1))

= −1

2
(γk+1e(k+1)iθ + γ−(k+1)e−i(k+1)θ),

the maximum absolute value of|Tk+1(z)| on the ellipseE is given by

max
z∈E
|Tk+1(z)| = 1

2
(γ(k+1) + γ−(k+1)), (A4)
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which is taken forθ = 0. Hence

max
y∈Ẽ
|ypk(y)− 1| = Tk+1(1/

√
1− µ2)

Tk+1((α+ β)/(β− α))
(A5)

In the second step we letλ = a + i b be an eigenvalue of̃T , wherea andb are real with√
a2+ b2 ≤ ρ̃. Therefore, all eigenvalues ofA are contained in the ellipse

P = {x : x = 1− ρ̃(cosθ+ i sin θ), 0≤ θ < 2π}.
Let ε be a small positive real number such thatρ̃ + ε < 1. Then the ellipseP is contained in
the ellipse

J (ε) = {x : x = 1− (ρ̃+ ε)(cosθ+ i µ(ε) sinθ), 0≤ θ < 2π},
whereµ(ε) = ρ̃/(ρ̃+ ε). It is straightforward to show that the linear system

α+ β = 2,

β− α = 2(ρ̃+ ε)
√

1− µ(ε)2

has a unique solution with positiveα(ε) andβ(ε). Hence, the ellipseJ (ε) is of the formẼ. It
follows from (A5) that

max
y∈J (ε)

|ypk(y)− 1| ≤ Tk+1(1/
√

1− µ(ε)2)

Tk+1(1/((ρ+ ε)
√

1− µ(ε)2))
. (A6)

Settingε→ 0 we find maxy∈J (ε) |ypk(y)− 1| = maxy∈P |yrk(y)− 1|. Therefore,

max
y∈P
|yrk(y)− 1| ≤ lim

ε→0

Tk+1(1/
√

1− µ(ε)2)

Tk+1(1/((ρ̃+ ε)
√

1− µ(ε)2)
= ρ̃k+1,

which implies the desired result as stated above.
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